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Abstract: This paper investigates the problem of global finite-time stabilization by state feedback for a class of
stochastic nonlinear systems with low-order nonlinearities, to which the existing control methods are inapplicable.
By skillfully adopting the method of adding a power integrator and constructing twice continuous differential
Lyapunov functions, a stepwise constructive continuous state feedback control methodology is proposed. Based on
stochastic finite-time stability theorem, it is proved that the solution of the closed-loop system is finite-time stable
in probability. Two simulation examples are provided to illustrate the effectiveness of the proposed approach.

Key—Words:Stochastic nonlinear systems, Low-order nonlinearities, Finite-time stable in probability

1 Introduction by introducing quartic Lyapunov functions. Since
then, the stabilization problem of stochastic nonlin-
In this paper, we consider the following stochastic ear systems have experienced a breakthrough and a
nonlinear system: series of research results have been achieved, for ex-
ample, one can see [5-18] and the references therein.

o . T . ;
dx; = hiziprdt + fi(z,u)dt + g7 (z,u)dw, However, it should be mentioned that most of the ex-

i=1-n—1 ) isting works only consider the feedback stabilizer that
dy = hpudt + fp(z, u)dt + g (x,u)dw, makes the trajectories of the systems converge asymp-
totically to the equilibrium almost surely as the time
wherez = (21,---,2,)" € R", u € R are the sys- goes to infinity.
tem state and input, respectively;, i = 1,---,n Compared to the asymptotic stabilization, the
are disturbed virtual control coefficients: is anm- finite-time stabilization, which renders the trajecto-

dimensional independent standard Wiener process de- jies of the closed-loop systems convergent to the ori-
fined on a complete probability spat@, 7, P) with gin almost surely in a finite time, has many advan-
{2 being a sample spacé, being as-field, andP be- tages such as fast response, high tracking precision,
ing a probability measure. The functiorfis : R" x and disturbance-rejection properties. Hence it is more
R — Randg; : R" x R — R™ are continuous and  meaningful to investigate the finite-time stabilization
vanish at the origin. - _ problem than the classical asymptotical stabilization.
Inthe past decades, the stability analysis and con- Recently, the work [19] has presented the concept of
trol design for stochastic nonlinear systems have re- fiyjte-time stability in probability for stochastic sys-
ce_|ved a great deal of aftention since stocha_stlc mod- tems and proved the stochastic Lyapunov theorem on
eling has come to play an important role in many finjte-time stability. Subsequently, the works [20-
branches of science and engineering applications. In 221 designed continuous state-feedback controllers to
[1], some fundamental criteria of stochastic stability gyarantee the global finite-time stability in probability
have been presented for stochastic nonlinear systemsyo stochastic nonlinear systems with different struc-

via Lyapunov's direct method. Florchinger in [2] ex- e, their assumptions on the system growth can be
tended Sontag’s formula to control stochastic differen- g, 1ymarized as the form:

tial systems driven by a Wiener process. The work [3] ; ;

has developed a methodology for recursive construc-

X . | < o . | < b .

tion of controllers under a quadratic Lyapunov func- fil < i Z [zl gil < @i Z lzil, (2
tion and a risk-sensitive cost function criterion, while i=1 i=1

the work [4] has desighed a backstepping control law where p; and ¢; are nonnegative smooth functions.
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However, from both practical and theoretical points of
view, it is somewhat restrictive to require system (1)
to satisfy such restriction. To illustrate the limitation,
let us consider the following simple system
dzy = udt + x?ﬁdw. (©)
Due to the presence of low-order tenrf/5 , itis eas-
ily verified that there are not smooth functiopsand
¢1 such that the condition (2) holds. This means that
the works [20- 22] cannot lead to any finite-time sta-
bilizer for the system (3). Immediately, the following
interesting questions are proposed: it possible to
relax the nonlinear growth condition (2) to cover the
low-order nonlinearities? Under the weaker condi-
tion, how can one design a continuous finite-time sta-
bilizer for the nonlinear system (3) and more general
nonlinear system (1) ?

Motivated by the continuous control ideas in
[23,24], and by necessarily modifying the method of
adding a power integrator, we shall solve the above
problems here. The main contributions of this paper
are two-folds: (i) By comparison with the existing
results in [20-23], the nonlinear growth condition is
largely relaxed and a much weaker sufficient condi-
tion is given. (ii) By successfully overcoming some
essential difficulties such as the weaker assumption
on the system growth and the construction af'%
paositive-definite and proper Lyapunov function, a new
method to global finite-time stabilization of stochastic
nonlinear systems by state feedback is given, which
can not only be seen as a natural unification of the ex-
isting methods, but also leads to more general results
never achieved before.

Notations. Throughout this paper, the follow-
ing notations are adopted.R™ denotes the set of
al nonnegative real number®™ denotes the real-
dimensional stands for the set of all real numbers Eu-
clidean space an&k™ "™ denotes the space of real
n x m-matrixes. R, :={£ | p andq positive integers
}, RY ':{Zi | pis a even positive integer ards an

even*
positive odd intege, R_, :={Z | p andq are posi-
tive odd integers, ang > 2¢}. For a given vector or
matrix X, X7 denotes its transpos&;-{ X } denotes
its trace whenX is square, andlX | is the Euclidean
norm of a vectorX. C* denotes the set of all func-
tions with continuousth partial derivativesC?(R")
denotes the family of all nonnegative functioh )
on R" which areC? in x; C? denotes the family of
all functions which areC? in the argument. X de-
notes the set of all functions®™ — R™, which are
continuous, strictly increasing and vanishing at zero;
K denotes the set of all functions which are of class
K and unbounded. Besides, let = (z1,---,2;)7
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and the arguments of the functions will be omitted or
simplified, whenever no confusion can arise from the
context. Forinstance, we sometimes denote a function

f(x(t)) by simply f(z), f(-) or f.

2 Preliminary results

Consider the stochastic nonlinear system

dr = f(z)dt + g(z)dw, (4)

wherex € R" is the system state with the initial con-
dition z(0) = x¢; w is anm-dimensional independent
standard Wiener process defined on a complete prob-
ability space((2, F, P) with 2 being a sample space,
F being as-field, andP being a probability measure.
The functionsf : R — R™andg : R — R"*™ are
continuous inz satisfying f(0) = 0 andg(0) = 0.

For any givenV(z) € C?, associated with
stochastic system (4), the the second-order differen-
tial operatorL is defined as follows:

Definition 112!, The trivial solution of (4) is said
to be finite-time stable in probability if the stochas-
tic system admits a solution for any initial datg
R™, denoted byt(t, z¢), and the following statements
hold:

ov 1

(i) Finite-time attractive in probability: For ev-
ery initial valuezy € R™ \ {0}, the first hitting time
Tz = inf{t : z(t,x0) = 0} = inf{t : |x(¢, z0)| = 0}
called stochastic settling time, is finite almost surely,
that is, P{= inf{t : x(t,z9) = 0} < o0} = 1.

(i) Stable in probability: For every pair af ¢
(0,1) andr > 0, there exists) = d(,7) > 0 such
that P{|z(t,z0)| < r,Vt > 0} > 1 — e, whenever
‘x()’ < 4.

Lemma 1. Suppose that there exists a non-
negative functionV € C?(R"), which is radially
unbounded, that iS],im|x|_,OO V(z) = +oo. If the
second-order differential operator &f with respect
to (4) satisfieCV < 0, then (4) has a solution for any
initial data.

Lemma 22!, Assume that (4) admits a solution
for each initial vector. If there exists @* function
V : R" — RT, K4 class functions:; and us, real
numberse > 0 and0 < « < 1, such that for alt > 0,

m(z)) < V() < pa(|zl),

LV (z) < —cVx),

then the origin of system (4) is globally finite-time sta-
ble in probability.
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In the remainder of this section, we present the
following lemmas which play an important role in the
design process.

Lemma 3. Forz € R,y € R, andp > 1
being a constant, the following inequalities hold:

|+ y[P < 277 aP + P,
(|2 +ly))"/? < [ /Py P < 2E7D/P (o] +[y]) /P
If p > 1is odd, then
|z —ylP < 277 2P — P,
|21/P —

yl /| < 2= /P (| — y|)/P.

Lemma 426, Let z, y be real variables, then for
any positive real numbers m andn, one has

alz[™|y|™ < blz|" "
n m—+n\—
o (o)
m—+n m

whereb > 0 is any real number.

m
n

QS

3 Control design and stability analy-
Sis
3.1 Assumptions

The objective of this paper is to develop a recursive
design method for globally finite-time stabilizing sys-
tem (1) via continuous state feedback under the fol-
lowing assumptions.

Assumption 1. The signs of the constants;,
i = 1,---,n are known, and there exist two known
positive constants;; andh,;s such that

hit < |hi] < hia.

Assumption 2. Fori = 1,---,n, there are
smooth functionsp;(z;) > 0, ¢;(z;) > 0 and a con-

stantr € (—2,0) such that
Ti+T
|[fi(x, u)| < @i(Ti) Zm\
j 1
2'r1+7' (5)
|gz(m u)‘ < ¢7, T Z ‘IL’]‘ 23
7=1
wherery =landr,.y=r;+7>0,i=1,---,n
For simplicity, itis assumed that= —* with m

being any even integer and being any odd integer,
under which and the definition ef in Assumption 2,
we know that; € R, .
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Remark 1. It is worth pointing out that Assump-
tion 2, which gives the nonlinear growth condition on
the system drift and the diffusion terms, encompasses
the assumptions in the closely related works[20-23].
To clearly show this, we would like to make the fol-
lowing comparisons to reveal the relationship between
Assumption 2 and the counterparts in [20-23], that is,
Assumption 2 includes those as special cases:

() In [20-22], the system nonlinearitie§’s and
gi's are required to satisfy:

‘gi(xﬂu)

where~;(z;) > 0 andn;(z;) > 0,i = 1,---,n are
C? functions. From the definitions of’s and, we

+ [zil),
+ [zil),

< %i(@) (|| 4 -+

| <
| < mi(@i) (|| + - (6)

get0 < Ti?"—;T — 1+1G‘i7i)7_ < 1and0 < 27;% _
22:2%7?:11; < 1 which mean that
|fi(z,w)| < (@) (1] et |x,|2
< ’YZ(xl)ﬂxl‘ " ‘$1‘ L4
T4 +7'
] e ‘$z| i)
+ 'ri+'r
< @i(@)(og| A | ),
|9i(z,u)| < m(a?z)(|a:1\2++ -+ \mz|) ),
< ni(Z)(Jzq| 2 |x1| T
2747 1_2Ti+7
+|«Tz‘ 2r; |«Tz‘ 2r; )
2r;+71 2r;+T
< ¢i(Z) (Jzg] 2 2 ]
i+"' 1+T
wherey; (z;) > max{’yl|x1‘ e .7%|x2‘ o }
ando;(z;) > max{m|x1| 77 .7772|$1| Tl}

are smooth functions, hence the main assumption (6)
in [20-22] is a special case of Assumption 2 above.

(ii) In [23], the system nonlinearitieg;’s andg;’s
are required to satisfy:

T

i+
|filz, )| < alzl%l

j 1
2r1+7 (7)
|gi(@,u)| < a22|ﬂ?g| #
7j=1
with constantszy, a; > 0 andr € (—2,0). Obvi-

ously, whenp;(z;) = a; andn;(z;) = a9, inequality
(5) degenerates to inequality (7). Thus, the main as-
sumption (7) in [23] is a special case of Assumption 2
above.

Remark 2. Assumption 1 slightly relaxes the
control coefficients in [20-23], where all of them are
precisely 1, but makes the finite-time control design of
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system (1) more complicated. Moreover, Assumption
1 implies that the signs df;’s are known and remain
unchanged. Thus, without loss of generality, we sup-
pose allh;’s are positive, thatisy; > 0,7 =0,---,n.

3.2 Control design procedure

In this subsection, we shall construct a continuous
state feedback controller by using the method of
adding a power integrator.

Step 1.Let&; = ' with o € R=2 and choose
Lyapunov function

x1 - go \ Mo—T—ry
—_— o
Vl = H/l = (Srl — :L‘lrl)
x*
1

wherez? = 0 andl is a constant satisfying € R,

even

and(4l — 2)o > 1. Using (1) and (5), we have

ds, (8)

4lo—T1—1r1 4lo—7T—1r1

LVi <hz;, " (ke —a5) +Fhx; T a5
Aog—17—17
+xi‘la (@1 + o ! ¢%)
1
)

Obviously, theC? virtual controller

Ao =T =11 5\ pitr
oy P17 )7

"y
= _510 é‘la

x5 ()\1 + 1+

2r

(10)
where); is a positive design constant, results in

dlo—7T—1r1

LV < —Mé 4+ gl 7 (zg—a3). (11)

Inductive step. Suppose at step — 1, there are
aC?, proper and positive definite Lyapunov function

Vi—1, and a set of virtual controllersy, - - -, x; de-
fined by
. L
2 ra o e
.T; = _510 610 ) 62 - 51722 - xQ 2 )
. mo L
T, = _ﬁkg_lgkg_la e = " — T
(12)

with 3y > 0, ---, Br_1 > 0 being smooth, such that

k—1 k—1
S D D S I
=1

m=1+1
+hk—1£k_1 7

Alo—T—rp_1q
where\;,,i=1,--- k—1,lp,,m=2,--- k—1are
positive design constants a@jﬁpl,rl Iy, = 0 for the
case ofk = 2.

(13)

(), — ).
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To complete the induction, at theth step, we
choose the following Lyapunov function

Vie(Zr) = Vi1 (Zg—1) + Wi(Zr),

(14)
where
Tk - el 41077'77“]C
Wi(Zy) :/ (S% —x, " ° ds. (15)
Ty
Note that
*-2 k-1 o

" = —Br1&p—1 = — 231371”7 (16)

=1

whereB; = Bi_1--- 5,1l = 1,---, k — 1 are smooth
functions, andr/r; > 2, using a similar method to the
one in [15], the functionl, can be shown to b&?,
proper and positive definite. Moreover, we can obtain

8Wk dlo—T1—rp
7oA

2 _ _ (4l-1)o—7—r), "k
0 ng _ 4lo — T kaki" o
a’L’k Tk

82Wk 82Wk 4lo — 1 — Tk

0x,L0x; - 0x;0xy, - o

4l=Do—7—rp a(l‘z k)

Xé‘k ax% 9
oWy Ao —1—1y ANz, ™)
ox; o o0x;

Tk - el (4l-1)o—T—7}
[y
z
*Wy, Ao —T1 -1y, (4 —1)o—T1—rg
or?

ds,

: o o
o
a(a?k, ")\ 2
(Zo)
8xi
T - e (41=2)o—T1—71}
X / (s’"k — xkr’“) ds
Ty
9 Ky
dlo— 1 —rp0%(z, ")
o 8%22
zy, - *Ti (4l71)00‘7'r77“,C
x/ (S’"k — T ’“) ds,
Ty,
2w, AHo—T1—r MH—-1)o—-T—13
Ox;0x; - o o
o ol
a(a?k, ") a(a?k ")
X
8zi a’L’j
Tk N el (4l=2)o—T—7}
x/ (S’"k —x, " ds,
T
(7)
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fori,j=1,---k—1,i+#j.
Using (13), (14) and (15), it follows that

k-1 k—1 )
S (- X s

i=1
dlo—T—r

+hié,

LV, <

Tr+1

4lo'7‘rfrk,_1
( T — T)

+hr1§,_, °
L oW
fk"'z k hszrl"'fz)

dlo—T—7y

+§, °
7] it O0x;0x;
—Z\a ol
—Z\ i ok 2
(18)

ox (9:6@

In order to proceed further, an appropriate es-
timate shouldbe given for the last seven terms on
the right-hand side of (18). This is accomplished in
the following propositions whose technical proof are
given in Appendix.

Proposition 1. There exist a constant > 0 and
a smooth functionp, > 0 such that

+1 k—1
2

"gz gj

1 O*Wy,
ax%

91 9

dlo—T—rK_1 dlo—71—r)

hkk—_llfk_1 o (wp—xf) + &, fr

2 %—Z?(hixi-i—l + fi)

+%M$ il Wk (Igz gil + 5 Z(aQWk‘Igz
+%jzll(aig/; oL g1l + = aagk“ng

k—1
<hy &'+ &ty
=1
Substituting (19) into (18) yields

Z(A— > )t
4l<77'1"]:n o

+hié,

dlo—7—1p

+hk£k

Clearly, theC? virtual controller
1 T+
7k +or)€,
1

kE+1  Tk41

3:—ﬁka é‘ko s

(19)

LV, < —
(20)

(Thy1 — $k+1)

* 41
Tpi1 + &k Pk

Thy1 = — 21)
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where);, is a positive design constant, results in

LV, < — N — l
o ZE mz:ﬂ )e! (22)
o—T— Tk
+hié), (Thy1 — Thoq)-

This completes the proof of the inductive step.

Using the inductive argument above, we conclude
that at thenth step, there exist a continuous state feed-
back control law of the form

"Tn+1 "n41l

u:;g;Jrl:_ﬁan gng , (23)
with 3, > 0 being smooth, such that
LV, < - Z(A—Zl) (24)
m=i+1
It is clear that by choosing;’s as
Ai> Y, (25)
m=i+1
we lead to .
LV, < —Xo Zs;‘l- (26)

whereXg = min{\; = > .| I} > 0.

We have thus far completed the controller design
procedure. The results can be summarized into the
following theorem.

Theorem 1. Under Assumptions 1 and 2, there
exists a continuous state feedback controller (23) such
that the origin of system (1) is globally finite-time sta-
ble in probability.

Proof. By using Lemma 3, it is easy to see that

Tk A -
Wy = / (s""k - Cﬂkrk) 7 ds
xk4lo—7—rk « (27)
<l o o — ai
_ Tk o—T
<2
So we have the following estimate
n
V=) Wi < (28)
k=1

Let o = 4lo/(4lo — 7). With (28) and (26) in
mind, by Lemma 2, it is not difficult to obtain that
LV, < =XV, /2% (29)

Thus, according to Lemmas 1 and 2, under the con-
tinuous state feedback controller (23), the origin of
system (1) is finite-time stable in probability.
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N 3 05 0z 04 o
Time(s) Time(s)

(a) System states (b) Control input

Figure 1. The responses of the closed-loop system
(30) and (31).

4  Simulation examples

In this section, two examples are given to illustrate of
the effectiveness of the proposed approach in section
3.

Example 1.
dimensional system

Consider the following one-

4

dry = udt + x7 dw. (30)
As shown in the Introduction, the works [20-22]
cannot provide us a global finite-time stabilizing con-

troller. However, it is easily verified thag; | < |x1|§,
therefore Assumption 2 holds withy = 0, ¢ = 1
andr = —z. By choosingr = 51 and/ = 1, we ap-
ply the deS|gn procedure shown in Section 3 to system
(30) and obtain the following continuous controller

3

= —4.11’15. (31)

For the simulation, we choose the initial values
x1(0) = 0.5. Figure 1 gives the responses of (30)
and (31), from which the efficiency of the controller
is demonstrated.

Example 2. Consider the parallel active sus-
pension system with random noise[20], which is de-

scribed by

1
ngdt + g1dw,

dxe = kypi,dt — cpxadt + gadw,

dry = 32)

wherezx; is the suspension travel; is the fluid flow
into the hydraulic actuatorA is the effective sur-
face of pistoncy andk, are some positive constants,
andi, is the current input that adjusts the opening of
the current-controlled solenoid valve that controls the
fluid flow. Obviously, system (32) is in the form of
system (1) withhy = %, ho = ky, f1 = 0 and

fa = —cypxa. To lllustrate our design scheme, we
choose the following parameterd: = ky = ¢y = 1,

6
L8
g1 = sr{ andgs

= 1z}. Now, the dynamics of
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the suspension system with random noise (32) can be
rewritten as

1 6
dry = zodt + —x{ dw,

cos (33)
dxo = t,dt — xodt + §x1dw,

It is worth pointing out that although system (33) is
simple, it cannot be globally finite-time stabilized us-
ing the design methods presented in [20-23] because
6
of the presence of both low-order terénl7 and high-
orderterrrkx1 Chooser = —%, which together with
r1 = 1implies that, = 2 andrz = 2. By Lemma 4,
itis easy to getgi| < Llaa|7, o] < (14 a3)lasl?
and|gq| < %(1+x%)|x1|%. Clearly, Assumption 1 and
2 hold with h11 = h12 = h21 = hgg =1, Y1 = 0,
o1 = %, 02 = 1+a3andgy = 31(1+2%). In
the following design procedure, we chodse % and

15

Defining & = z; and choosing/;
15

ff{(sT — ™ )8ds with 2 = 0, we obtain
11
LV < ——fl + 51 (xg — x5), (34)
11
wherexs = igxl = —B37 &7, Definingéy = o3 —
x5 and choosinds = Vi + W = V4 + ffg(si”

37 . .
x’2‘3)ﬁds, a direct calculation leads to

»CVQS_ 51 "‘51 (552_552)

oW-
+§2 ’Lv+§2 fo+—= 2y

8$
) 8 g2

2 Ox?
+1 8W2
2&%18 X9

(35)
+

|91|2
|92Tgl|~

By using Lemmas 3 and 4, we get

7 1.8 8
& (g —a3) < 5513 + 253.3021&,

oo

37 1 8 8
2°f2 < &7 +1.9989(1 +23)63,

18W2
28

lan

oo

5 |gal” <

< 1651 + 100.7592(1 + xl)fg,

oo

il < 067 + 4691401 + e,

0? Wg
0xy

8
1 8
5 \92 g1 < 16 51 +1.3304¢5,
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= of Science Technology Research of Education Depart-
‘ i ment of Henan Province under Grants 13A120016,
14A520003.
""""""""" Appendix
(a) System states (b) Control input

Proof of Proposition 1. Recallingo/r;, > 2 and

Figure 2: The responses of the closed-loop system USing (12), it follows from Lemma 3 that

(33) and (37).

Tk
T (o8

Tk

g — @] < 217 . 7t N 7 (A1)

oW 18 : =217 g7

——x9 < =&F .6549¢

e x9 < 851 +99.6549¢5,

under which By (Al) and Lemma 4, it can be obtained that
LVo < (6} + &) + &b
2 > 10 1 2 2 v . (36) h é-4l<77‘rl;7‘k_1( B *)

+(461.8369 + 2t + 2% + 2d)e5. ESk-1 T, (42)

<2V byt T T &l

Therefore, the controller can be chosen as
’ < &8 1l + & pra.
1
iy = —(461.8369 + o} + 2 +ad)ey,  (B7)
wherel,; andpy; are positive constant.

which guarantees the origin of the closed-loop system According to (5), (12) and Lemma 3, it follows

(33) and (37) finite-time stable in probability. With

A ) h
initial valuesz1(0) = 1 andx2(0) = —1, Figure 2 that
is obtained to demonstrate the effectiveness of the ap- ,
proach. ‘ ritr
fil <o) la(t)]

j=1

5 Conclusion : rit
<o (Il + Bl ) (43)

This paper relaxed the assumptions proposed in [20- j=1
23] and obtained much more general results on global e T
finite-time state feedback stabilization of stochastic < @i Z &1

j=1

nonlinear systems than the previous ones. There are

some related problems to investigate, e.g., for system

(1) with unknown parameters, can an adaptive sta- . Tt
bilizing controller be given under a similar assump- Wheregy = § =0andg; = >>%_ (1 + 8,7 )¢i =
tion? In recent years, many results on deterministic 0 is & smooth function.

systems have been achieved[27-34], considering that Using (A3) and Lemma 4, we lead to
stochastic noise frequently arises and is inevitable in

various realistic dynamic models of practical control I k

problems, naturally, how extending these methods to & v kf < Z € |@‘§“r,€:7
the stochastic counterpart is very interesting and sig- K b=k = F J (A4)

nificant. b1
<2 Y &+ & pra.
=1
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to obtain that

*re k—1 o—r;
a(mk’“)__z@Bl rl_O'eriZ
81'2‘ —1 81'2 ! 4 v ’
2z, ") =B, £ o0B; T
83712 B — 83712 ! ri Ox; !
—gaBi .U”Z _Z. U_TiBimng”,
r; Ox; ° 7 T ’
0z, ") = 2B, ¢ odB;
0x;0x; N - 0x;0x; : rj Ox; 7
g 8BZ 0;1.”
r;0x; b
(A5)
fori,j=1,---,k—1,i%# .

By (12),(17), (A3),(A5) and Lemma 3, we get
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h 2 (2
2; amz ( i Lit1 + f)
! (4l-1)o—1—rp

dlo—T17—r1 Tk s o * TN
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g xz
(el
k— *a

Z

=1

hzszrl + fz)

k-1

<ale] Z <Z)

’L

"xq‘ "

2| Billai| = )< i2lzis1] + 1il)
k: 1k: 1 8B .
< Ckzz (1€q| + Bg—11&g—11)
i=1 ¢g=1

+<pzz |l ;)

]+ Bicaia]) T

+ ©i Z |Em] n;T)a

(A46)

% (Ria(&ial + Bil&])”
k—1 o
+Ckz 7"_

( z2(|fz+1| + 5z|fz

wherec;, > 0 is a constant.
Noting thatr; > 0, by using Lemma 4, we have

k—1
=(it1 + fi) < lis Z{fl + & ps.
i=1 i=1
(A7)
wherelys is positive constant angl.3 is a nonnegative
smooth function.
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From (5), (12) and Lemma 3, it follows that

2r;+T7

9| < @Z || *7

J=1
<hiy <|§j| + 5j71|§j71|)

=1

1
_ 2r;+7
< ¢1 Z |£]| 20,

=1

2r;+7

(48)

_ ) 2ri+7
wherefy = § = 0andg; = 35 (1 + 6,7 )¢i >
0 is a smooth function.

According to (12), (17),(A5) and (A8), we have
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(49)

I(Ile

+ 1B 1(1&1 + B-1l€-1D)”
] .
X (ﬁf;z > |§p|2T2i;r
p=1

whered, > 0 is a constant.
Noting thatr; > 0 andr; > 0, by using Lemma
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4, we have

1

2

k—1

>

W,
i 0x;0x;

)‘gz g]’ < lk4z€z +£k Pk4,

1,J=1,1#j

(A10)

wherely, is positive constant angl.4 is a nonnegative
smooth function.

Similarly, we can obtain

—Z)aw‘“)|gz|2<zk52a +l'p

(A11)
k-1
0 Wk T Al gdl
- | < : .
(A12)
k-1
1 3 %1%
i ‘ 96> <l Y &+ &l porr. (A13)
i=1

wherel,;, andpy;, ;7 = 5,6,7 are the appropriate

positive constants and nonnegative smooth functions,
respectively. So far, by choosirig = 2]7':1

l; and

Pr = Z;zllkj, the proof of Proposition 1 is com-
pleted.
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