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Abstract: This paper investigates the problem of global finite-time stabilization by state feedback for a class of
stochastic nonlinear systems with low-order nonlinearities, to which the existing control methods are inapplicable.
By skillfully adopting the method of adding a power integrator and constructing twice continuous differential
Lyapunov functions, a stepwise constructive continuous state feedback control methodology is proposed. Based on
stochastic finite-time stability theorem, it is proved that the solution of the closed-loop system is finite-time stable
in probability. Two simulation examples are provided to illustrate the effectiveness of the proposed approach.
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1 Introduction

In this paper, we consider the following stochastic
nonlinear system:

dxi = hixi+1dt + fi(x, u)dt + gT
i (x, u)dω,

i = 1, · · · , n − 1,
dxn = hnudt + fn(x, u)dt + gT

n (x, u)dω,
(1)

wherex = (x1, · · · , xn)T ∈ Rn, u ∈ R are the sys-
tem state and input, respectively.hi, i = 1, · · · , n
are disturbed virtual control coefficients.ω is anm-
dimensional independent standard Wiener process de-
fined on a complete probability space(Ω,F , P ) with
Ω being a sample space,F being aσ-field, andP be-
ing a probability measure. The functionsfi : Rn ×
R → R and gi : Rn × R → Rm are continuous and
vanish at the origin.

In the past decades, the stability analysis and con-
trol design for stochastic nonlinear systems have re-
ceived a great deal of attention since stochastic mod-
eling has come to play an important role in many
branches of science and engineering applications. In
[1], some fundamental criteria of stochastic stability
have been presented for stochastic nonlinear systems
via Lyapunov’s direct method. Florchinger in [2] ex-
tended Sontag’s formula to control stochastic differen-
tial systems driven by a Wiener process. The work [3]
has developed a methodology for recursive construc-
tion of controllers under a quadratic Lyapunov func-
tion and a risk-sensitive cost function criterion, while
the work [4] has designed a backstepping control law

by introducing quartic Lyapunov functions. Since
then, the stabilization problem of stochastic nonlin-
ear systems have experienced a breakthrough and a
series of research results have been achieved, for ex-
ample, one can see [5-18] and the references therein.
However, it should be mentioned that most of the ex-
isting works only consider the feedback stabilizer that
makes the trajectories of the systems converge asymp-
totically to the equilibrium almost surely as the time
goes to infinity.

Compared to the asymptotic stabilization, the
finite-time stabilization, which renders the trajecto-
ries of the closed-loop systems convergent to the ori-
gin almost surely in a finite time, has many advan-
tages such as fast response, high tracking precision,
and disturbance-rejection properties. Hence it is more
meaningful to investigate the finite-time stabilization
problem than the classical asymptotical stabilization.
Recently, the work [19] has presented the concept of
finite-time stability in probability for stochastic sys-
tems and proved the stochastic Lyapunov theorem on
finite-time stability. Subsequently, the works [20-
22] designed continuous state-feedback controllers to
guarantee the global finite-time stability in probability
for stochastic nonlinear systems with different struc-
tures, their assumptions on the system growth can be
summarized as the form:

|fi| ≤ ϕi

i
∑

j=1

|xj |, |gi| ≤ φi

i
∑

j=1

|xj|, (2)

whereϕi and φi are nonnegative smooth functions.
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However, from both practical and theoretical points of
view, it is somewhat restrictive to require system (1)
to satisfy such restriction. To illustrate the limitation,
let us consider the following simple system

dx1 = udt + x
4/5
1 dω. (3)

Due to the presence of low-order termx4/5
1 , it is eas-

ily verified that there are not smooth functionsϕ1 and
φ1 such that the condition (2) holds. This means that
the works [20- 22] cannot lead to any finite-time sta-
bilizer for the system (3). Immediately, the following
interesting questions are proposed:Is it possible to
relax the nonlinear growth condition (2) to cover the
low-order nonlinearities? Under the weaker condi-
tion, how can one design a continuous finite-time sta-
bilizer for the nonlinear system (3) and more general
nonlinear system (1) ?

Motivated by the continuous control ideas in
[23,24], and by necessarily modifying the method of
adding a power integrator, we shall solve the above
problems here. The main contributions of this paper
are two-folds: (i) By comparison with the existing
results in [20-23], the nonlinear growth condition is
largely relaxed and a much weaker sufficient condi-
tion is given. (ii) By successfully overcoming some
essential difficulties such as the weaker assumption
on the system growth and the construction of aC2,
positive-definite and proper Lyapunov function, a new
method to global finite-time stabilization of stochastic
nonlinear systems by state feedback is given, which
can not only be seen as a natural unification of the ex-
isting methods, but also leads to more general results
never achieved before.

Notations. Throughout this paper, the follow-
ing notations are adopted.R+ denotes the set of
all nonnegative real numbers,Rn denotes the realn-
dimensional stands for the set of all real numbers Eu-
clidean space andRn×m denotes the space of real
n×m-matrixes.R+

odd :={p
q | p andq positive integers

}, R+
even:={p

q | p is a even positive integer andq is an

positive odd integer}, R≥2
odd :={p

q | p andq are posi-
tive odd integers, andp ≥ 2q}. For a given vector or
matrix X, XT denotes its transpose,Tr{X} denotes
its trace whenX is square, and|X| is the Euclidean
norm of a vectorX. Ci denotes the set of all func-
tions with continuousith partial derivatives;C2(Rn)
denotes the family of all nonnegative functionsV (x)
on Rn which areC2 in x; C2 denotes the family of
all functions which areC2 in the argument.K de-
notes the set of all functions:R+ → R+, which are
continuous, strictly increasing and vanishing at zero;
K∞ denotes the set of all functions which are of class
K and unbounded. Besides, letx̄i = (x1, · · · , xi)

T

and the arguments of the functions will be omitted or
simplified, whenever no confusion can arise from the
context. For instance, we sometimes denote a function
f(x(t)) by simplyf(x), f(·) or f .

2 Preliminary results

Consider the stochastic nonlinear system

dx = f(x)dt + g(x)dω, (4)

wherex ∈ Rn is the system state with the initial con-
dition x(0) = x0; ω is anm-dimensional independent
standard Wiener process defined on a complete prob-
ability space(Ω,F , P ) with Ω being a sample space,
F being aσ-field, andP being a probability measure.
The functions:f : Rn → Rn andg : Rn → Rn×m are
continuous inx satisfyingf(0) = 0 andg(0) = 0.

For any givenV (x) ∈ C2, associated with
stochastic system (4), the the second-order differen-
tial operatorL is defined as follows:

LV =
∂V

∂x
f +

1

2
Tr

{

gT ∂2V

∂x2
g
}

.

Definition 1 [21]. The trivial solution of (4) is said
to be finite-time stable in probability if the stochas-
tic system admits a solution for any initial datax0 ∈
Rn, denoted byx(t, x0), and the following statements
hold:

(i) Finite-time attractive in probability: For ev-
ery initial valuex0 ∈ Rn \ {0}, the first hitting time
τx0 = inf{t : x(t, x0) = 0} = inf{t : |x(t, x0)| = 0}
called stochastic settling time, is finite almost surely,
that is,P{= inf{t : x(t, x0) = 0} < ∞} = 1.

(ii) Stable in probability: For every pair ofε ∈
(0, 1) andr > 0, there existsδ = δ(ε, r) > 0 such
that P{|x(t, x0)| < r,∀t ≥ 0} ≥ 1 − ε,whenever
|x0| < δ.

Lemma 1 [21]. Suppose that there exists a non-
negative functionV ∈ C2(Rn), which is radially
unbounded, that is,lim|x|→∞ V (x) = +∞. If the
second-order differential operator ofV with respect
to (4) satisfiesLV ≤ 0, then (4) has a solution for any
initial data.

Lemma 2[21]. Assume that (4) admits a solution
for each initial vector. If there exists aC2 function
V : Rn → R+, K∞ class functionsµ1 andµ2, real
numbersc > 0 and0 < α < 1, such that for allt > 0,

µ1(|x|) ≤ V (x) ≤ µ2(|x|),

LV (x) ≤ −cV α(x),

then the origin of system (4) is globally finite-time sta-
ble in probability.
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In the remainder of this section, we present the
following lemmas which play an important role in the
design process.

Lemma 3 [25]. For x ∈ R, y ∈ R, andp ≥ 1
being a constant, the following inequalities hold:

|x + y|p ≤ 2p−1|xp + yp|,

(|x|+|y|)1/p ≤ |x|1/p+|y|1/p ≤ 2(p−1)/p(|x|+|y|)1/p.

If p ≥ 1 is odd, then

|x − y|p ≤ 2p−1|xp − yp|,

|x1/p − y1/p| ≤ 2(p−1)/p(|x − y|)1/p.

Lemma 4 [26]. Let x, y be real variables, then for
any positive real numbersa, m andn, one has

a|x|m|y|n ≤ b|x|m+n

+
n

m + n

(m + n

m

)−m
n

a
m+n

n b−
m
n |y|m+n,

whereb > 0 is any real number.

3 Control design and stability analy-
sis

3.1 Assumptions

The objective of this paper is to develop a recursive
design method for globally finite-time stabilizing sys-
tem (1) via continuous state feedback under the fol-
lowing assumptions.

Assumption 1. The signs of the constantshi,
i = 1, · · · , n are known, and there exist two known
positive constantshi1 andhi2 such that

hi1 ≤ |hi| ≤ hi2.

Assumption 2. For i = 1, · · · , n, there are
smooth functionsϕi(x̄i) ≥ 0, φi(x̄i) ≥ 0 and a con-
stantτ ∈ (− 1

n , 0) such that

|fi(x, u)| ≤ ϕi(x̄i)
i

∑

j=1

|xj |
ri+τ

rj ,

|gi(x, u)| ≤ φi(x̄i)

i
∑

j=1

|xj |
2ri+τ

2rj ,

(5)

wherer1 = 1 andri+1 = ri + τ > 0, i = 1, · · · , n.
For simplicity, it is assumed thatτ = −m

n with m
being any even integer andm being any odd integer,
under which and the definition ofri in Assumption 2,
we know thatri ∈ R+

odd.

Remark 1. It is worth pointing out that Assump-
tion 2, which gives the nonlinear growth condition on
the system drift and the diffusion terms, encompasses
the assumptions in the closely related works[20-23].
To clearly show this, we would like to make the fol-
lowing comparisons to reveal the relationship between
Assumption 2 and the counterparts in [20-23], that is,
Assumption 2 includes those as special cases:

(i) In [20-22], the system nonlinearitiesfi’s and
gi’s are required to satisfy:

|fi(x, u)| ≤ γi(x̄i)(|x1| + · · · + |xi|),
|gi(x, u)| ≤ ηi(x̄i)(|x1| + · · · + |xi|),

(6)

whereγi(x̄i) ≥ 0 andηi(x̄i) ≥ 0, i = 1, · · · , n are
C2 functions. From the definitions ofri’s andτ , we
get 0 < ri+τ

rj
= 1+iτ

1+(j−1)τ < 1 and 0 < 2ri+τ
2rj

=
2+(2i−1τ
2+2(j−1)τ < 1 which mean that

|fi(x, u)| ≤ γi(x̄i)(|x1| + · · · + |xi|)

≤ γi(x̄i)(|x1|
ri+τ

r1 |x1|
1−

ri+τ

r1 + · · ·

+|xi|
ri+τ

ri |xi|
1−

ri+τ

ri )

≤ ϕi(x̄i)(|x1|
ri+τ

r1 + · · · + |xi|
ri+τ

ri ),

|gi(x, u)| ≤ ηi(x̄i)(|x1| + · · · + |xi|)

≤ ηi(x̄i)(|x1|
2ri+τ

2r1 |x1|
1−

2ri+τ

2r1 + · · ·

+|xi|
2ri+τ

2ri |xi|
1−

2ri+τ

2ri )

≤ φi(x̄i)(|x1|
2ri+τ

2r1 + · · · + |xi|
2ri+τ

2ri ),

whereϕi(x̄i) ≥ max{γi|x1|
1−

ri+τ

r1 , · · · , γi|xi|
1−

ri+τ

ri }

andφi(x̄i) ≥ max{ηi|x1|
1−

2ri+τ

2r1 , · · · , ηi|x1|
1−

2ri+τ

2ri }
are smooth functions, hence the main assumption (6)
in [20-22] is a special case of Assumption 2 above.

(ii) In [23], the system nonlinearitiesfi’s andgi’s
are required to satisfy:

|fi(x, u)| ≤ a1

i
∑

j=1

|xj |
ri+τ

rj ,

|gi(x, u)| ≤ a2

i
∑

j=1

|xj |
2ri+τ

2rj ,

(7)

with constantsa1, a2 > 0 andτ ∈ (− 1
n , 0). Obvi-

ously, whenϕi(x̄i) = a1 andηi(x̄i) = a2, inequality
(5) degenerates to inequality (7). Thus, the main as-
sumption (7) in [23] is a special case of Assumption 2
above.

Remark 2. Assumption 1 slightly relaxes the
control coefficients in [20-23], where all of them are
precisely 1, but makes the finite-time control design of
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system (1) more complicated. Moreover, Assumption
1 implies that the signs ofhi’s are known and remain
unchanged. Thus, without loss of generality, we sup-
pose allhi’s are positive, that is,hi > 0, i = 0, · · · , n.

3.2 Control design procedure

In this subsection, we shall construct a continuous
state feedback controller by using the method of
adding a power integrator.

Step 1.Let ξ1 = x
σ
r1
1 with σ ∈ R≥2

odd and choose
Lyapunov function

V1 = W1 =

∫ x1

x∗

1

(

s
σ
r1 − x

∗ σ
r1

1

)

4lσ−τ−r1
σ

ds, (8)

wherex∗
1 = 0 andl is a constant satisfying4l ∈ R+

even
and(4l − 2)σ ≥ 1. Using (1) and (5), we have

LV1 ≤ h1x
4lσ−τ−r1

r1
1 (x2 − x∗

2) + h1x
4lσ−τ−r1

r1
1 x∗

2

+x4lσ
1

(

ϕ1 +
4lσ − τ − r1

2r1
φ2

1

)

.

(9)
Obviously, theC0 virtual controller

x∗
2 = −

1

h11

(

λ1 + ϕ1 +
4lσ − τ − r1

2r1
φ2

1

)

xr1+τ
1

:= −β
r2
σ

1 ξ
r2
σ

1
(10)

whereλ1 is a positive design constant, results in

LV1 ≤ −λ1ξ
4l
1 + h1ξ

4lσ−τ−r1
σ

1 (x2 − x∗
2).

(11)

Inductive step. Suppose at stepk − 1, there are
a C2, proper and positive definite Lyapunov function
Vk−1, and a set of virtual controllersx∗

1, · · · , x
∗
k de-

fined by

x∗
1 = 0, ξ1 = x

σ
r1
1 − x

∗ σ
r1

1 ,

x∗
2 = −β

r2
σ

1 ξ
r2
σ

1 , ξ2 = x
σ
r2
2 − x

∗ σ
r2

2 ,
...

...

x∗
k = −β

rk
σ

k−1ξ
rk
σ

k−1, ξk = x
σ
rk

k − x
∗ σ

rk

k ,
(12)

with β1 > 0, · · · , βk−1 > 0 being smooth, such that

LVk−1 ≤ −

k−1
∑

i=1

(

λi −

k−1
∑

m=i+1

lm

)

ξ4l
i

+hk−1ξ
4lσ−τ−rk−1

σ

k−1 (xk − x∗
k).

(13)

whereλi, i = 1, · · · , k − 1, lm, m = 2, · · · , k − 1 are
positive design constants and

∑k
m=i+1 lm = 0 for the

case ofk = 2.

To complete the induction, at thekth step, we
choose the following Lyapunov function

Vk(x̄k) = Vk−1(x̄k−1) + Wk(x̄k), (14)

where

Wk(x̄k) =

∫ xk

x∗

k

(

s
σ
rk − x

∗ σ
rk

k

)

4lσ−τ−rk
σ

ds. (15)

Note that

x
∗ σ

rk

k = −βk−1ξk−1 = −

k−1
∑

l=1

Blx
σ
rl

l , (16)

whereBl = βk−1 · · · βl, l = 1, · · · , k − 1 are smooth
functions, andσ/rl > 2, using a similar method to the
one in [15], the functionVk can be shown to beC2,
proper and positive definite. Moreover, we can obtain

∂Wk

∂xk
= ξ

4lσ−τ−rk
σ

k ,

∂2Wk

∂x2
k

=
4lσ − τ − rk

rk
ξ

(4l−1)σ−τ−rk
σ

k x
σ−rk

rk

k ,

∂2Wk

∂xk∂xi
=

∂2Wk

∂xi∂xk
= −

4lσ − τ − rk

σ

×ξ
(4l−1)σ−τ−rk

σ

k

∂(x
∗ σ

rk

k )

∂xi
,

∂Wk

∂xi
= −

4lσ − τ − rk

σ

∂(x
∗ σ

rk

k )

∂xi

×

∫ xk

x∗

k

(

s
σ
rk − x

∗ σ
rk

k

)

(4l−1)σ−τ−rk
σ

ds,

∂2Wk

∂x2
i

=
4lσ − τ − rk

σ
·
(4l − 1)σ − τ − rk

σ

×
(∂(x

∗ σ
rk

k )

∂xi

)2

×

∫ xk

x∗

k

(

s
σ
rk − x

∗ σ
rk

k

)

(4l−2)σ−τ−rk
σ

ds

−
4lσ − τ − rk

σ

∂2(x
∗ σ

rk

k )

∂x2
i

×

∫ xk

x∗

k

(

s
σ
rk − x

∗ σ
rk

k

)

(4l−1)σ−τ−rk
σ

ds,

∂2Wk

∂xi∂xj
=

4lσ − τ − rk

σ
·
(4l − 1)σ − τ − rk

σ

×
∂(x

∗ σ
rk

k )

∂xi

∂(x
∗ σ

rk

k )

∂xj

×

∫ xk

x∗

k

(

s
σ
rk − x

∗ σ
rk

k

)

(4l−2)σ−τ−rk
σ

ds,

(17)
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for i, j = 1, · · · , k − 1, i 6= j.
Using (13), (14) and (15), it follows that

LVk ≤ −

k−1
∑

i=1

(

λi −

k−1
∑

m=i+1

lm

)

ξ4l
i

+hkξ
4lσ−τ−rk

σ

k xk+1

+hk−1ξ
4lσ−τ−rk−1

σ

k−1 (xk − x∗
k)

+ξ
4lσ−τ−rk

σ

k fk +

k−1
∑

i=1

∂Wk

∂xi
(hixi+1 + fi)

+
1

2

k−1
∑

i,j=1,i6=j

∣

∣

∣

∂2Wk

∂xi∂xj

∣

∣

∣
|gT

i gj |

+
1

2

k−1
∑

i=1

∣

∣

∣

∂2Wk

∂x2
i

∣

∣

∣
|gi|

2

+
1

2

k−1
∑

i=1

∣

∣

∣

∂2Wk

∂xk∂xi

∣

∣

∣
|gT

k gi| +
1

2

∣

∣

∣

∂2Wk

∂x2
k

∣

∣

∣
|gk|

2.

(18)
In order to proceed further, an appropriate es-

timate shouldbe given for the last seven terms on
the right-hand side of (18). This is accomplished in
the following propositions whose technical proof are
given in Appendix.

Proposition 1. There exist a constantlk > 0 and
a smooth functionϕk ≥ 0 such that

hk−1ξ
4lσ−τ−rk−1

σ

k−1 (xk − x∗
k) + ξ

4lσ−τ−rk
σ

k fk

+

k−1
∑

i=1

∂Wk

∂xi
(hixi+1 + fi)

+
1

2

k−1
∑

i,j=1,i6=j

∣

∣

∣

∂2Wk

∂xi∂xj

∣

∣

∣
|gT

i gj | +
1

2

k−1
∑

i=1

∣

∣

∣

∂2Wk

∂x2
i

∣

∣

∣
|gi|

2

+
1

2

k−1
∑

i=1

∣

∣

∣

∂2Wk

∂xk∂xi

∣

∣

∣
|gT

k gi| +
1

2

∣

∣

∣

∂2Wk

∂x2
k

∣

∣

∣
|gk|

2

≤ lk

k−1
∑

i=1

ξ4l
i + ξ4l

k ϕk.

(19)
Substituting (19) into (18) yields

LVk ≤ −

k−1
∑

i=1

(

λi −

k
∑

m=i+1

lm

)

ξ4l
i

+hkξ
4lσ−τ−rk

σ

k (xk+1 − x∗
k+1)

+hkξ
4lσ−τ−rk

σ

k x∗
k+1 + ξ4l

k ϕk.

(20)

Clearly, theC0 virtual controller

x∗
k+1 = −

1

hk1
(λk + ϕk)ξ

rk+τ

σ

k

:= −β
rk+1

σ

k ξ
rk+1

σ

k ,

(21)

whereλk is a positive design constant, results in

LVk ≤ −

k
∑

i=1

(

λi −

k
∑

m=i+1

lm

)

ξ4l
i

+hkξ
4lσ−τ−rk

σ

k (xk+1 − x∗
k+1).

(22)

This completes the proof of the inductive step.
Using the inductive argument above, we conclude

that at thenth step, there exist a continuous state feed-
back control law of the form

u = x∗
n+1 = −β

rn+1
σ

n ξ
rn+1

σ
n , (23)

with βn > 0 being smooth, such that

LVn ≤ −
n

∑

i=1

(

λi −
n

∑

m=i+1

lm

)

ξ4l
i . (24)

It is clear that by choosingλi’s as

λi >
n

∑

m=i+1

lm, (25)

we lead to

LVn ≤ −λ0

n
∑

i=1

ξ4l
i . (26)

whereλ0 = min{λi −
∑n

m=i+1 lm} > 0.
We have thus far completed the controller design

procedure. The results can be summarized into the
following theorem.

Theorem 1. Under Assumptions 1 and 2, there
exists a continuous state feedback controller (23) such
that the origin of system (1) is globally finite-time sta-
ble in probability.

Proof. By using Lemma 3, it is easy to see that

Wk =

∫ xk

x∗

k

(

s
σ
rk − x

∗ σ
rk

k

)

4lσ−τ−rk
σ

ds

≤ |ξk|
4lσ−τ−rk

σ |xk − x∗
k|

≤ 21−
rk
σ |ξk|

4lσ−τ
σ .

(27)

So we have the following estimate

Vn =

n
∑

k=1

Wk ≤ 2

n
∑

k=1

|ξk|
4lσ−τ

σ . (28)

Let α = 4lσ/(4lσ − τ). With (28) and (26) in
mind, by Lemma 2, it is not difficult to obtain that

LVn ≤ −λ0V
α
n /2α. (29)

Thus, according to Lemmas 1 and 2, under the con-
tinuous state feedback controller (23), the origin of
system (1) is finite-time stable in probability.
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Figure 1: The responses of the closed-loop system
(30) and (31).

4 Simulation examples

In this section, two examples are given to illustrate of
the effectiveness of the proposed approach in section
3.

Example 1. Consider the following one-
dimensional system

dx1 = udt + x
4
5
1 dω. (30)

As shown in the Introduction, the works [20-22]
cannot provide us a global finite-time stabilizing con-
troller. However, it is easily verified that|g1| ≤ |x1|

4
5 ,

therefore Assumption 2 holds withϕ1 = 0, φ1 = 1
andτ = −2

5 . By choosingσ = 11
5 andl = 1, we ap-

ply the design procedure shown in Section 3 to system
(30) and obtain the following continuous controller

u = −4.1x
3
5
1 . (31)

For the simulation, we choose the initial values
x1(0) = 0.5. Figure 1 gives the responses of (30)
and (31), from which the efficiency of the controller
is demonstrated.

Example 2. Consider the parallel active sus-
pension system with random noise[20], which is de-
scribed by

dx1 =
1

A
x2dt + g1dω,

dx2 = kf ivdt − cfx2dt + g2dω,
(32)

wherex1 is the suspension travel,x2 is the fluid flow
into the hydraulic actuator,A is the effective sur-
face of piston,cf andkf are some positive constants,
andiv is the current input that adjusts the opening of
the current-controlled solenoid valve that controls the
fluid flow. Obviously, system (32) is in the form of
system (1) withh1 = 1

A , h2 = kf , f1 = 0 and
f2 = −cfx2. To illustrate our design scheme, we
choose the following parameters:A = kf = cf = 1,

g1 = 1
5x

6
7
1 and g2 = 1

2x2
1. Now, the dynamics of

the suspension system with random noise (32) can be
rewritten as

dx1 = x2dt +
1

5
x

6
7
1 dω,

dx2 = ivdt − x2dt +
1

2
x2

1dω,
(33)

It is worth pointing out that although system (33) is
simple, it cannot be globally finite-time stabilized us-
ing the design methods presented in [20-23] because

of the presence of both low-order term15x
6
7
1 and high-

order term1
2x2

1. Chooseτ = −2
7 , which together with

r1 = 1 implies thatr2 = 5
7 andr3 = 3

7 . By Lemma 4,

it is easy to get|g1| ≤
1
5 |x1|

6
7 , |f2| ≤ (1 + x2

2)|x2|
3
5

and|g2| ≤
1
2 (1+x2

1)|x1|
4
7 . Clearly, Assumption 1 and

2 hold withh11 = h12 = h21 = h22 = 1, ϕ1 = 0,
φ1 = 1

5 , ϕ2 = 1 + x2
2 and φ2 = 1

2(1 + x2
1). In

the following design procedure, we choosel = 2
3 and

σ = 15
7 .

Defining ξ1 = x
15
7

1 and choosingV1 = W1 =
∫ x1

x∗

1
(s

15
7 − x

∗ 15
7

1 )
7
3 ds with x∗

1 = 0, we obtain

LV1 ≤ −
11

10
ξ

8
3
1 + ξ

7
3
1 (x2 − x∗

2), (34)

wherex∗
2 = −12

10x
5
7
1 := −β

1
3
1 ξ

1
3
1 . Definingξ2 = x3

2 −

x∗3
2 and choosingV2 = V1 + W2 = V1 +

∫ x2

x∗

2
(s3 −

x∗3
2 )

37
15 ds, a direct calculation leads to

LV2 ≤ −
11

10
ξ

8
3
1 + ξ

7
3
1 (x2 − x∗

2)

+ξ
37
15
2 iv + ξ

37
15
2 f2 +

∂W2

∂x1
x2

+
1

2

∂2W2

∂x2
2

|g2|
2 +

1

2

∂2W2

∂x2
1

|g1|
2

+
1

2

∂2W2

∂x1∂x2
|gT

2 g1|.

(35)

By using Lemmas 3 and 4, we get

ξ
7
3
1 (x2 − x∗

2) ≤
1

2
ξ

8
3
1 + 253.3021ξ

8
3
2 ,

ξ
37
15
2 f2 ≤

1

8
ξ

8
3
1 + 1.9989(1 + x4

2)ξ
8
3
2 ,

1

2

∂2W2

∂x2
2

|g2|
2 ≤

1

16
ξ

8
3
1 + 100.7592(1 + x8

1)ξ
8
3
2 ,

1

2

∂2W2

∂x2
1

|g1|
2 ≤

1

16
ξ

8
3
1 + 4.6914(1 + x4

1)ξ
8
3
2 ,

1

2

∂2W2

∂x1∂x2
|gT

2 g1| ≤
1

16
ξ

8
3
1 + 1.3304ξ

8
3
2 ,
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Figure 2: The responses of the closed-loop system
(33) and (37).

∂W2

∂x1
x2 ≤

1

8
ξ

8
3
1 + 99.6549ξ

8
3
2 ,

under which

LV2 ≤ −
1

10
(ξ

8
3
1 + ξ

8
3
2 ) + ξ

37
15
2 iv

+(461.8369 + x4
1 + x8

1 + x4
2)ξ

8
3
2 .

(36)

Therefore, the controller can be chosen as

iv = −(461.8369 + x4
1 + x8

1 + x4
2)ξ

1
5
2 , (37)

which guarantees the origin of the closed-loop system
(33) and (37) finite-time stable in probability. With
initial valuesx1(0) = 1 andx2(0) = −1, Figure 2
is obtained to demonstrate the effectiveness of the ap-
proach.

5 Conclusion

This paper relaxed the assumptions proposed in [20-
23] and obtained much more general results on global
finite-time state feedback stabilization of stochastic
nonlinear systems than the previous ones. There are
some related problems to investigate, e.g., for system
(1) with unknown parameters, can an adaptive sta-
bilizing controller be given under a similar assump-
tion? In recent years, many results on deterministic
systems have been achieved[27-34], considering that
stochastic noise frequently arises and is inevitable in
various realistic dynamic models of practical control
problems, naturally, how extending these methods to
the stochastic counterpart is very interesting and sig-
nificant.
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Appendix

Proof of Proposition 1. Recallingσ/rk > 2 and
using (12), it follows from Lemma 3 that

|xk − x∗
k| ≤ 21−

rk
σ

∣

∣

∣
x

σ
rk

k − x
∗ σ

rk

k

∣

∣

∣

rk
σ

= 21−
rk
σ |ξk|

rk
σ .

(A1)

By (A1) and Lemma 4, it can be obtained that

hkξ
4lσ−τ−rk−1

σ

k−1 (xk − x∗
k)

≤ 21−
rk
σ hk2|ξk−1|

4lσ−τ−rk−1
σ |ξk|

rk
σ

≤ ξ4l
k−1lk1 + ξ4l

k ρk1.

(A2)

wherelk1 andρk1 are positive constant.
According to (5), (12) and Lemma 3, it follows

that

|fi| ≤ ϕi

i
∑

j=1

|xj(t)|
ri+τ

rj

≤ ϕi

i
∑

j=1

(

|ξj | + βj−1|ξj−1|
)

ri+τ

σ

≤ ϕ̄i

i
∑

j=1

|ξj |
ri+τ

σ ,

(A3)

whereβ0 = ξ0 = 0 andϕ̄i =
∑i

j=1(1 + β
ri+τ

σ

j−1 )ϕi ≥
0 is a smooth function.

Using (A3) and Lemma 4, we lead to

ξ
4lσ−τ−rk

σ

k fk ≤ ϕ̄k

k
∑

j=1

|ξk|
4lσ−τ−rk

σ |ξj |
rk+τ

σ

≤ lk2

k−1
∑

i=1

ξ4l
i + ξ4l

k ρk2.

(A4)

wherelk2 is positive constant andρk2 is a nonnegative
smooth function.

Using (16), after simple calculations, it is no hard
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to obtain that

∂(x
∗ σ

rk

k )

∂xi
= −

k−1
∑

l=1

∂Bl

∂xi
x

σ
rl

l −
σ

ri
Bix

σ−ri
ri

i ,

∂2(x
∗ σ

rk

k )

∂x2
i

= −

k−1
∑

l=1

∂2Bl

∂x2
i

x
σ
rl

l −
σ

ri

∂Bi

∂xi
x

σ−ri
ri

i

−
σ

ri

∂Bi

∂xi
x

σ−ri
ri

i −
σ

ri
·
σ − ri

ri
Bix

σ−2ri
ri

i ,

∂2(x
∗ σ

rk

k )

∂xi∂xj
= −

k−1
∑

l=1

∂2Bl

∂xi∂xj
x

σ
rl

l −
σ

rj

∂Bj

∂xi
x

σ−rj

rj

j

−
σ

ri

∂Bi

∂xj
x

σ−ri
ri

i ,

(A5)
for i, j = 1, · · · , k − 1, i 6= j.

By (12),(17), (A3),(A5) and Lemma 3, we get

k−1
∑

i=1

∂Wk

∂xi
(hixi+1 + fi)

= −
4lσ − τ − rk

σ

∫ xk

x∗

k

(

s
σ
rk − x

∗ σ
rk

k

)

(4l−1)σ−τ−rk
σ

ds

×

k−1
∑

i=1

∂(x
∗ σ

rk

k )

∂xi
(hixi+1 + fi)

≤ ck|ξk|
(4l−1)σ−τ

σ

k−1
∑

i=1

(

k−1
∑

q=1

∣

∣

∣

∂Bq

∂xi

∣

∣

∣
|xq|

σ
rq

+
σ

ri
|Bi||xi|

σ−ri
ri

)

(hi2|xi+1| + |fi|)

≤ ck

k−1
∑

i=1

k−1
∑

q=1

∣

∣

∣

∂Bq

∂xi

∣

∣

∣
|ξk|

(4l−1)σ−τ

σ (|ξq| + βq−1|ξq−1|)

×
(

hi2(|ξi+1| + βi|ξi|)
ri+τ

σ + ϕ̄i

i
∑

m=1

|ξm|
ri+τ

σ

)

+ck

k−1
∑

i=1

σ

ri
|Bi||ξk|

(4l−1)σ−τ

σ (|ξi| + βi−1|ξi−1|)
σ−ri

σ

×
(

hi2(|ξi+1| + βi|ξi|)
ri+τ

σ + ϕ̄i

i
∑

m=1

|ξm|
ri+τ

σ

)

,

(A6)
whereck > 0 is a constant.

Noting thatri > 0, by using Lemma 4, we have

k−1
∑

i=1

∂Wk

∂xi
(xi+1 + fi) ≤ lk3

k−1
∑

i=1

ξ4l
i + ξ4l

k ρk3.

(A7)
wherelk3 is positive constant andρk3 is a nonnegative
smooth function.

From (5), (12) and Lemma 3, it follows that

|gi| ≤ φi

i
∑

j=1

|xj |
2ri+τ

2rj

≤ φi

i
∑

j=1

(

|ξj| + βj−1|ξj−1|
)

2ri+τ

2σ

≤ φ̄i

i
∑

j=1

|ξj |
2ri+τ

2σ ,

(A8)

whereβ0 = ξ0 = 0 andφ̄i =
∑i

j=1(1 + β
2ri+τ

2σ

j−1 )φi ≥
0 is a smooth function.

According to (12), (17),(A5) and (A8), we have

1

2

k−1
∑

i,j=1,i6=j

∣

∣

∣

∂2Wk

∂xi∂xj

∣

∣

∣
|gT

i gj |

=
1

2

k−1
∑

i,j=1,i6=j

∣

∣

∣

4lσ − τ − rk

σ
·
(4l − 1)σ − τ − rk

σ

×
∂(x

∗ σ
rk

k )

∂xi

∂(x
∗ σ

rk

k )

∂xj

×

∫ xk

x∗

k

(

s
σ
rk − x

∗ σ
rk

k

)

(4l−2)σ−τ−rk
σ

ds
∣

∣

∣
|gT

i gj |

≤ dk

k−1
∑

i,j=1,i6=j

|ξk|
(4l−2)σ−τ

σ

×
∣

∣

∣

k−1
∑

q=1

∂Bq

∂xi
x

σ
rq
q +

σ

ri
Bix

σ−ri
ri

i

∣

∣

∣

×
∣

∣

∣

k−1
∑

m=1

∂Bm

∂xj
x

σ
rm
m +

σ

rj
Bjx

σ−rj

rj

j

∣

∣

∣
|gT

i gj |

≤ dk

k−1
∑

i,j=1,i6=j

|ξk|
(4l−2)σ−τ

σ

(

k−1
∑

l=1

∣

∣

∣

∂Bl

∂xi

∣

∣

∣

×(|ξl| + βl−1|ξl−1|) +
σ

ri
|Bi|(|ξi|

+βi−1|ξi−1|)
σ−ri

σ

)

×
(

k−1
∑

m=1

∣

∣

∣

∂Bm

∂xj

∣

∣

∣
(|ξm| + βm−1|ξm−1|)

+
σ

rj
|Bj |(|ξj | + βj−1|ξj−1|)

σ−rj

σ

)

×
(

φ̄i

i
∑

p=1

|ξp|
2ri+τ

2σ

)(

φ̄j

j
∑

q=1

|ξq|
2rj+τ

2σ

)

,

(A9)
wheredk > 0 is a constant.

Noting thatri > 0 andrj > 0, by using Lemma
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4, we have

1

2

k−1
∑

i,j=1,i6=j

∣

∣

∣

∂2Wk

∂xi∂xj

∣

∣

∣
|gT

i gj | ≤ lk4

k−1
∑

i=1

ξ4l
i + ξ4l

k ρk4,

(A10)
wherelk4 is positive constant andρk4 is a nonnegative
smooth function.

Similarly, we can obtain

1

2

k−1
∑

i=1

∣

∣

∣

∂2Wk

∂x2
i

∣

∣

∣
|gi|

2 ≤ lk5

k−1
∑

i=1

ξ4l
i + ξ4l

k ρk5.

(A11)

1

2

k−1
∑

i=1

∣

∣

∣

∂2Wk

∂xk∂xi

∣

∣

∣
|gT

k gi| ≤ lk6

k−1
∑

i=1

ξ4l
i + ξ4l

k ρk6.

(A12)

1

2

∣

∣

∣

∂2Wk

∂x2
k

∣

∣

∣
|gk|

2 ≤ lk7

k−1
∑

i=1

ξ4l
i + ξ4l

k ρk7. (A13)

where lkj, andρkj, j = 5, 6, 7 are the appropriate
positive constants and nonnegative smooth functions,
respectively. So far, by choosinglk =

∑7
j=1 lkj and

ρk =
∑7

j=1 lkj, the proof of Proposition 1 is com-
pleted.
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